CH(TMS)), 0.42 (s, 9H; TMS-benzyl), 0.59 (s, 9H; TMS-fluorenyl), 0.95 (mb, 4H; THF), 1.93 and 1.96 (2 s, 6H; NMe₂), 2.59 (mb, 4H; THF), 6.12 (t, ${}^{3}J(H,H) = 7.5$ Hz, 1H; benzyl), 6.27 (d, ${}^{3}J(H,H) = 7.8$ Hz, 1H; benzyl), 6.31 (t, ${}^{3}J(H,H) = 7.5$ Hz, 1H; benzyl), 6.88 (d, ${}^{3}J(H,H) = 8.4$ Hz, 1H; benzyl), 7.04 (t, ${}^{3}J(H,H) = 7.5$ Hz, 1H; fluorenyl), 7.09 (t, ${}^{3}J(H,H) = 7.5$ Hz, 1H; fluorenyl), 7.24 (t, ${}^{3}J(H,H) = 7.2$ Hz, 1H; fluorenyl), 7.31 (t, ${}^{3}J(H,H) = 7.5$ Hz, 1H; fluorenyl), 7.93 (d, ${}^{3}J(H,H) = 7.8$ Hz, 1H; fluorenyl), 8.03 (d, ${}^{3}J(H,H) = 8.4$ Hz, 1H; fluorenyl), 8.14 (d, ${}^{3}J(H,H) = 8.4$ Hz, 1H; fluorenyl), 8.17 (d, ${}^{3}J(H,H) = 7.8$ Hz, 1H; fluorenyl); ${}^{13}C$ NMR (600 MHz, C_6D_6 , 20 °C): $\delta = 2.43$ (TMS), 2.44 (TMS), 24.9 (THF), 41.8 (NMe), 44.5 (NMe), 44.9 (CH(TMS)), 68.5 (THF), aromatics: 870, 112.8, 116.5, 116.8, 119.4, 121.2, 121.4, 121.7, 121.9, 123.3, 124.2, 124.3, 124.4, 126.4, 128.3, 135.0, 140.7, 140.9, 147.0.

Crystal structure determination of 3: Crystals grown from benzene solution contain up to three equivalents of benzene per Ca atom and crack upon cooling resulting in broad peak profiles and poor diffraction. Crystals grown from warm hexane also show solvent incorporation but remain stable upon cooling. Measurement on an Enraf Nonius CAD4 diffractometer at -90 °C, $Mo_{K\alpha}$, $2\theta_{max} = 50$ °, 13501 independent reflections ($R_{int} =$ 0.011), 10658 reflections observed with $I > 2\sigma(I)$. Crystal data: $C_{32}H_{45}Ca$ NOSi₂ triclinic, space group $P\bar{1}$, a = 13.5981(13), b = 16.8236(12), c =18.2031(15) Å, $\alpha = 70.779(6)$, $\beta = 77.084(7)$, $\gamma = 82.671(7)^{\circ}$, V = 3826.1(6) Å³, Z = 4, R = 0.0456, wR2 = 0.1466, GOF = 1.08, $\rho_{max} = 0.0456$ 0.57 e Å^{-3} , $\rho_{\text{min}} = -0.44 \text{ e Å}^{-3}$. The unit cell contains a hole with two severely disordered hexane molecules (confirmed by NMR analysis). Disorder was treated with the bypass method using the program SQUEEZE^[17] incorporated in PLATON.^[18] Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-165023. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

Received: July 4, 2001 [Z17423]

- K. Knoll in Kunststoff Handbuch 4: Polystyrol (Eds.: H. Gausepohl, R. Gellert), Hanser, München, 1996, pp. 67–82; J. R. Wünsch in Kunststoff Handbuch 4: Polystyrol (Eds.: H. Gausepohl, R. Gellert), Hanser, München, 1996, pp. 82–104.
- [2] H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R. M. Waymouth, *Angew. Chem.* 1995, 107, 1255; *Angew. Chem. Int. Ed. Engl.* 1995, 34, 1134; G. W. Coates, *Chem. Rev.* 2000, 100, 1223; L. Resconi, L. Cavallo, A. Fait, F. Piemontesi, *Chem. Rev.* 2000, 100, 1253.
- [3] G. Natta, P. Pino, P. Corradini, F. Danusso, E. Mantica, G. Mazzanti, G. Moraglio, J. Am. Chem. Soc. 1955, 77, 1708.
- [4] N. Ishihara, M. Kuramoto, M. Uoi, Macromolecules 1986, 21, 2464.
- [5] M. Malanga, Adv. Mater. 2000, 12, 1869.
- [6] R. J. Kern, Nature 1960, 187, 410.
- [7] D. J. Worsfold, S. Bywater, Makromol. Chem. 1963, 65, 245.
- [8] L. Cazzaniga, R. E. Cohen, Macromolecules 1989, 22, 4125.
- [9] T. Makino, T. E. Hogen-Esch, Macromolecules 1999, 32, 5712.
- [10] M. Kawabe, M. Murata, K. Soga, *Macromol. Rapid Commun.* 1999, 20, 569.
- [11] C. Lambert, P. v. R. Schleyer, Angew. Chem. 1994, 106, 1187; Angew. Chem. Int. Ed. Engl. 1994, 33, 1129.
- [12] A. Weeber, S. Harder, H. H. Brintzinger, K. Knoll, Organometallics 2000, 19, 1325.
- [13] S. Harder, F. Feil, A. Weeber, Organometallics 2001, 20, 1044.
- [14] Circa 4-5 equivalents result in fast inversion at room temperature. Addition of larger amounts of THF result in the crystallization of the solvent-separated ion pair: [Me₃Si-fluorenyl⁻]₂[Ca²⁺(THF)₆].
- [15] Polymerizations with the analogue but more reactive strontium complex show faster initiation and consequently less tailing (polydispersity (P.D.) = 1.218): F. Feil, S. Harder, *Organometallics* 2001, accepted.
- [16] Intramolecular chelation enhances the stability of carbanionic stereogenic centers: C. Strohmann, B. C. Abele, D. Schildbach, K. Strohfeldt, Chem. Commun. 2000, 865.
- [17] P. A. van der Sluis, A. L. Spek, Acta Crystallogr. Sect. A 1990, 46, 194.
- [18] A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2000.

"Biomimetic" Cascade Reactions in Organic Synthesis: Construction of 4-Oxatricyclo-[4.3.1.0]decan-2-one Systems and Total Synthesis of 1-O-Methylforbesione via Tandem Claisen Rearrangement/Diels – Alder Reactions**

K. C. Nicolaou* and Jim Li

The intriguing 4-oxatricyclo[4.3.1.0]decan-2-one ring system is found in a growing class of biologically active natural products isolated from the genus *Garcinia* of the Guttiferae family of plants. Among the members of this class of compounds are forbesione (2, isolated from *Garcinia forbesii*),^[1] morellin (3, from *G. morella*),^[2] and the cytotoxic agents

1: R = Me: 1-*O*-methylforbesione

3: morellin

2: R = H: forbesione

4: R = H: bractatin
5: R = Me: 1-*O*-methylbractatin

6: 1-O-methylneobractatin

bractatin (4), 1-O-methylisobractatin (5), and 1-O-methylneobractatin (6), all of which were found in the species G. bracteata, [3] as well as lateriflorone (from G. lateriflora), [4]

[*] Prof. Dr. K. C. Nicolaou, J. Li

Department of Chemistry and The Skaggs Institute for Chemical Biology

The Scripps Research Institute

10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)

Fax: (+1)858-784-2469

and.

Department of Chemistry and Biochemistry

University of California, San Diego

9500 Gilman Drive, La Jolla, CA 92093 (USA)

E-mail: kcn@scripps.edu

- [**] We thank Drs. D. H. Huang, G. Siuzdak, and R. Chadha for NMR spectroscopic, mass spectrometric, and X-ray crystallographic assistance, respectively. This work was financially supported by the National Institutes of Health (USA), The Skaggs Institute for Chemical Biology, a graduate fellowship from The Skaggs Institute for Research (to J.L.), and grants from Abbott Laboratories, ArrayBiopharma, Boehringer Ingelheim, DuPont, Hoffmann-La-Roche, Merck, Pfizer, and Schering Plough.
- Supporting information for this article is available on the WWW under http://www.angewandte.com or from the author.

hanburin (from G. hanburyi),[5] and the gaudichaudiones and gaudichaudiic acids (from G. gaudichaudii).[6] An elegant proposal for the biosynthesis of morellins was put forward by Quillinan and Scheinmann over 30 years ago.[7] This biosynthetic hypothesis, in which a Claisen rearrangement followed by an intramolecular Diels-Alder reaction was postulated, was supported by the results of a model study involving unsubstituted allyl ethers which led to rearranged products upon prolonged heating in refluxing decalin in unspecified yields. Here we report the development of this Claisen rearrangement/intramolecular Diels - Alder cascade into a useful strategy for the construction of the fully substituted polycyclic systems found in the two types of natural products represented by the aforementioned compounds. In addition to providing credence to the proposed biogenetic origin of these natural prod-

ucts, the described new synthetic technology found application in the first total synthesis of 1-O-methylforbesione (1).

Coumarin 7 (Scheme 1) was chosen as the entry point to our explorations of the Claisen rearrangement/intramolecular Diels-Alder reaction cascade not only because of the commercial availability of this compound, but also due to the opportunities for molecular diversity it presented. Specif-

Scheme 1. Synthesis of cascade precursor **11.** a) tBuOK (2.1 equiv), THF, 0°C, 30 min; then concentrated under reduced pressure and suspended in MeCN; [18]C-6 (1.5 equiv), 15 min, 0°C; **8** (2.5 equiv), $0\rightarrow40$ °C, 2 h, 92%; b) CH₃PPh₃+Br⁻ (2.0 equiv), NaHMDS (2.0 equiv), THF, $0\rightarrow25$ °C, 96%; c) tBuOK (1.1 equiv), THF, 0°C, 30 min, then concentrated under reduced pressure and suspended in MeCN; [18]C-6 (1.0 equiv), 15 min, 0°C; **8** (1.5 equiv), 0°C, 1 h; d) CH₃PPh₃+Br⁻ (2.0 equiv), NaHMDS (2.0 equiv), THF, 0°C, 87% for two steps. NaHMDS = sodium bis(trimethylsilyl)amide.

ically, it was anticipated that a precursor such as compound 11, synthesized from 7, could engage in two possible Claisen rearrangement pathways (A and B, Scheme 2) to furnish the two intermediates 12 and 13. These two intermediates could then undergo two different intramolecular Diels – Alder reactions as shown in Scheme 2 which would lead to a maximum of four possible final products (14–17). Molecular

Scheme 2. One-pot cascade Claisen rearrangement/intramolecular Diels – Alder reaction of precursor 11. a) decalin, 125 °C, 15 min; 14, 43 %; 15, 18 %; 16, 30 %. Energies given in square brackets are differences of strain energies relative to precursor 11.

Scheme 3. Retrosynthetic analysis of 1-O-methylforbesione (1).

mechanics calculations on these cagelike compounds revealed the following relative (to precursor **11**) strain energies: 24.8, 25.8, 19.8, and 28.4 kcal mol⁻¹ for compounds **14**, **15**, **16**, and **17**, respectively.^[8]

The synthesis of the required precursor 11 from 7 was not trivial given the challenge associated with the construction of the crowded ortho-bis- $(\alpha, \alpha$ -dimethylallyl) aryl ethers.^[9] Indeed, early attempts to directly allylate or propargylate the catechol system of 7 failed,[10] which prompted us to develop a stepwise approach involving initial reaction of the phenoxide anions of 7 with α -bromoisobutyraldehyde (8) followed by Wittig olefination (Scheme 1). This sequence turned out to be both efficient and general as demonstrated by several examples.[11] For the case at hand, the di-potassium salt of 7 reacted with aldehyde 8 in acetronitrile and in the presence of [18]crown-6^[12] to afford a mixture of the two regioisomeric lactols 9a:9b (ca. 1.3:1 ratio) in 92% total yield. Treatment of this mixture with 2 equiv of Ph₃P=CH₂ gave a mixture of mono-olefins 10a and 10b (ca. 1.3:1 ratio) in 96% yield. Reiteration of this two-step Oalkylation procedure with this mixture resulted in the installation of the second allyl group (87% overall yield) to furnish the desired cascade precursor 11 (Scheme 1).

Heating compound 11 in decalin^[13] at 125 °C for 15 min furnished cleanly three products, 14 (43%), 15 (18%), and 16 (30%), which were chromatographically separated and fully characterized by spectroscopic means and X-ray crystallographic analysis.^[14] None of the fourth possible structure (17) was formed, undoubtedly as a consequence of its highly strained nature relative to the other three products (14–16, see

Scheme 2). These results were both rewarding in terms of confirming the Quillinan–Scheinmann biosynthetic hypothesis^[7] and encouraging in terms of possibly facilitating a "biomimetic" total synthesis of a number of natural products. We consequently selected 1-O-methylforbesione (1) as a

Scheme 4. Synthesis of cascade precursor **19**. a) nBuLi~(1.05~equiv), THF, $-78\,^{\circ}C$, 15 min; then aldehyde **21** (1.0 equiv) in THF, $-78\,^{\circ}C$, 45 min; b) TBAF (1.2 equiv), THF, $0\,^{\circ}C$, 15 min, 92% for two steps; c) MnO₂ (10.0 equiv), CH₂Cl₂, 25 °C, 4 h; d) KOH (10.0 equiv), MeOH, reflux, 6 h, 86% for two steps; e) 10% Pd/C (10% wt/wt), H₂ (1 atm), 25 °C, 45 min, 98%; f) tBuOK~(3.2~equiv), THF, $0\,^{\circ}C$; then concentrated and suspended in MeCN; [18]C-6 (3.0 equiv), 15 min, $0\,^{\circ}C$; **8** (4.0 equiv), $0\,^{\circ}A$ 0°C, 2 h, **26a:26b** (ca. 1:2), 73%; g) CH₃PPh₃+Br⁻ (3.0 equiv), NaHMDS (3.0 equiv), THF, $0\,^{\circ}C$, 1 h, 87%, **27a:27b** (ca. 1:2); h) tBuOK~(1.2~equiv), THF, $0\,^{\circ}C$; then concentrated and suspended in MeCN; [18]C-6 (1.0 equiv), 15 min, $0\,^{\circ}C$; **8** (1.5 equiv), $0\,^{\circ}C$, 2 h, **28a:28b** (ca. 1:2), 94%; i) CH₃PPh₃+Br⁻ (2.0 equiv), NaHMDS (2.0 equiv), THF, $0\,^{\circ}C$, 1 h, 92%. TBS = tert-butyldimethylsilyl, Bn = benzyl, TBAF = tet

28b

synthetic target to demonstrate the applicability of this cascade-based synthetic technology to natural product synthesis.

The structure of forbesione contains a xanthone skeleton, two apparent prenyl groups, and a tricyclo[4.3.1.0]decan-2-one system, a cagelike structure which hides a third prenyl moiety. Relying on the one-pot Claisen rearrangement/intramolecular Diels – Alder reaction cascade just described, the tris- $(\alpha,\alpha$ -dimethylallyl) aryl ether 19 may be retrosynthetically defined as a possible precursor to the targeted methyl derivative of forbesione (1) (Scheme 3). Compound 19 may, in turn, be derived via the above described two-step allylation protocol from xanthone 18 whose origins can be traced back to benzenoid systems 20 and 21 (Scheme 4).

Coupling of the lithium derivative of **20**^[15] with aldehyde **21**^[16] followed by desilylation (92 % overall yield) and MnO₂ oxidation furnished benzophenone **24** via intermediates **22** and **23** (Scheme 4). Exposure of **24** to KOH in refluxing MeOH led, after hydrogenolysis, to trihydroxy xanthone **18**

(85% overall yield) which was subjected to α , α -dimethylallylation as shown in Scheme 1. Thus, treatment of **18** with 3.2 equiv tBuOK in THF at 0°C followed by solvent exchange (THF \rightarrow MeCN) and sequential addition of [18]crown-6 and α -bromoisobutyraldehyde (**8**) furnished a mixture of aldehyde–lactols (**26a**:**26b** ca. 1:2) in 73% yield. Wittig olefination (Ph₃P=CH₂) of this mixture then led to a mixture of hydroxy di-olefins (**27a**:**27b**, ca. 1:2, 87% yield) which was allylated further by reiteration of this two-step sequence to afford the targeted precursor **19** (86% over yield) via aldehyde mixture **28a**:**28b**.

Gratifyingly, upon heating prenylated xanthone **19** in DMF at 120 °C for 20 min, the expected compound, 1-*O*-methylforbesione (**1**), was indeed obtained as the major product (63 % yield), presumably by the anticipated double Claisen rearrangement followed by an intramolecular Diels – Alder reaction, as outlined in Scheme 5. Accompanying **1** were its isomers **35** (2 % yield), **36** (<1 % yield, presumed structure^[17]), and **37** (26 % yield), presumably formed via the

Scheme 5. Synthesis of 1-O-methyl forbesione (1), and 4-oxatricyclo[4.3.1.0]decan-2-ones 35, 36 and 37 via a "biomimetic" double Claisen rearrangement/intramolecular Diels-Alder cascade reaction. a) DMF, 120 °C, 20 min; 1, 63 %; 35, 2 %; 36, <1 %; 37, 26 %.

pathways outlined in Scheme 5. The timing of the two Claisen rearrangements has not been determined and the sequences shown in Scheme 5 are simply for purposes of convenience. The structure of 1-*O*-methylforbesione (1) was confirmed by both spectroscopic means (see Table 1) and X-ray crystallographic analysis [14] (see Figure 1), whereas those of 35–37 were based on spectroscopic evidence and comparisons of their NMR spectra to those of model systems 14–17 (Scheme 2) and those reported for the bractatins. [3]

Table 1. Selective analytical data for 1-O-methylforbesione (1).

Light yellow solid; mp = 192 – 196 °C (dec.) (ethyl acetate/hexanes, 2:1); $R_{\rm f}=0.31$ (silica gel, ethyl acetate/hexanes, 2:1); $^{\rm l}H$ NMR (600 MHz, CDCl₃): $\delta=7.31$ (d, J=8.23 Hz, 1 H), 6.26 (bs, 1 H), 6.10 (s, 1 H), 5.23 (m, 1 H), 4.51 (m, 1 H), 3.85 (s, 3 H), 3.46 (m, 2 H), 3.41 (m, 1 H), 2.55 (m, 1 H), 2.45 (m, 2 H), 2.26 (dd, J=16.05, 5.68 Hz, 1 H), 1.81 (s, 3 H), 1.76 (d, J=1.19 Hz, 3 H), 1.65 (s, 3 H), 1.37 (s, 3 H), 1.31 (dd, J=15.31, 11.55 Hz, 1 H), 1.25 (s, 3 H), 1.08 (s, 3 H); $^{\rm l}^{\rm l}^{\rm C}$ NMR (150 MHz, CDCl₃): $\delta=204.1, 174.9, 162.0, 161.3, 160.1, 136.4, 135.8, 134.5, 132.3, 121.2, 117.6, 106.4, 104.6, 93.9, 90.6, 84.5, 83.0, 56.2, 49.0, 46.7, 30.2, 29.1, 28.8, 26.0, 25.8, 25.6, 22.6, 18.0, 17.0; HR-MS (MALDI-FT): calcd for <math display="inline">C_{29}H_{34}O_{6}\left[M+H^{+}\right]$: 479.2428; found: 479.2417

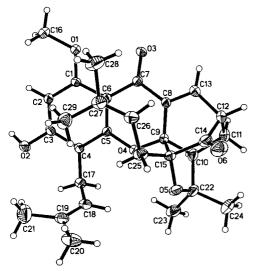


Figure 1. X-Ray crystrallographic structure of 1-O-methylforbesione (1) in ORTEP representation.

The development of the Claisen rearrangement/intramolecular Diels-Alder cascade reaction as a powerful and practical method for the construction of complex molecules is a further demonstration of the value of "biomimetically" inspired synthetic strategies toward natural products. The described expedient total synthesis of racemic 1-O-methylforbesione (1) bodes well for further applications of this synthetic technology to other members of this constantly expanding class of natural products containing the 4-oxatricyclo[4.3.1.0]decan-2-one ring framework and related systems.

Received: July 27, 2001 [Z17615]

- H. N. Ramachandran, H. B. Bhat, P. M. Nair, V. K. V. Raghavan, K. Venkataraman, *Tetrahedron Lett.* **1963**, 459; c) C. G. Karanjgaonkar, P. M. Nair, K. Venkataraman, *Tetrahedron Lett.* **1966**, 687; d) H. B. Bhat, P. M. Nair, K. Venkataraman, *Indian J. Chem.* **1964**, 2, 402.
- [3] O. Thoison, J. Fahy, V. Dumontet, A. Chiaroni, C. Riche, M. V. Tri, T. Sévenet, J. Nat. Prod. 2000, 63, 441.
- [4] S. Kosela, S.-G. Cao, X.-H. Wu, J. J. Vittal, T. Sukri, Masdianto, S.-H. Goh, K.-Y. Sim, Tetrahedron Lett. 1999, 40, 157.
- [5] a) L. J. Lin, L. Z. Lin, J. M. Pezzuto, G. A. Cordell, N. Ruangrungsi, Magn. Reson. Chem. 1993, 31, 340; b) J. Asano, K. Chiba, M. Tada, T. Yoshii, Phytochemistry 1996, 41, 815.
- [6] a) S. G. Cao, X. H. Wu, K.-Y. Sim, B. H. K. Tan, J. T. Pereira, W. H. Wong, N. F. Hew, S. H. Goh, *Tetrahedron Lett.* 1998, 39, 3353; b) S. G. Cao, V. H. L. Sng, X. H. Wu, K.-Y. Sim, B. H. K. Tan, J. T. Pereira, S. H. Goh, *Tetrahedron* 1998, 54, 10915; c) X.-H. Wu, B. H. K. Tan, S.-G. Cao, K.-Y. Sim, S. H. Goh, *Nat. Prod. Lett.* 2000, 14, 453; d) V. Rukachaisirikul, W. Kaewnok, S. Koysomboom, S. Phongpaichit, W. C. Walter, *Tetrahedron* 2000, 56, 8539; e) Y. J. Xu, S. C. Yip, S. Kosela, E. Fitri, M. Hana, S. H. Goh, K.-Y. Sim, *Org. Lett.* 2000, 2, 3945.
- [7] A. J. Quillinan, F. Scheinmann, Chem. Commun. 1971, 966.
- [8] Computational studies on compounds 11 and 14-17 were performed using the program DISCOVER packaged in Insight II software on a SGI workstation. High temperature (1000 K) molecular dynamics (MD) was used to generate conformations of each compound. Molecular mechanics potentials (AMBER force field) were determined relative to 11.
- [9] To the best of our knowledge (SciFinder and Beilstein databases), this type of highly hindered ortho-bis- $(\alpha, \alpha$ -dimethylallyl) aryl ether has not been previously reported.
- [10] Classical methods involving copper-catalyzed phenolic propargylation proved unsuccessful with the present catechol substrates. The Trost palladium-catalyzed phenolic allylation method [B. M. Trost, D. Toste, J. Am. Chem. Soc. 1998, 120, 815] also failed to provide an entry into the desired aryl ethers in this instance.
- [11] Further details of this two-step sequence for the preparation of various aryl allyl ethers will be reported in due course.
- [12] Applications of crown ethers in organic synthesis can be found in the following selected references: a) D. Dehm, A. Padwa, J. Org. Chem. 1975, 40, 3139; b) F. Terrier, G. Ah-Kow, M. Pouet, M. Simonnin, Tetrahedron Lett. 1976, 227; c) C. L. Liotta, H. P. Harris, M. McDermott, T. Gonzalez, K. Smith, Tetrahedron Lett. 1974, 2417.
- [13] Among several solvents evaluated for this one-pot cascade reaction, decalin was found to be the most suitable in terms of yields and convenience.
- [14] Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-168029 (14), -168031 (15), -168028 (16), and -168030 (1). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
- [15] Aryl bromide 20 was prepared from 3,5-dimethoxyphenol by bromination with NBS in CH₂Cl₂ followed by benzylation with BnBr and K₂CO₃ in refluxing acetone.
- [16] Compound **21** was prepared from 2,3,4-trihydroxybenzaldehyde by benzylation with BnBr and K_2CO_3 in refluxing acetone, followed by selective debenzylation at C2 with $MgBr_2 \cdot OEt_2$, and silylation of the resulting phenolic group with TBSCl.
- [17] Owing to the low yield in which this presumed product was formed, its full characterization is still pending.
- [18] A small amount of intermediate 31 isolated in some experiments suggested the indicated order of events in the conversion of 19 to 1 as illustrated in Scheme 5.

Y.-W. Leong, L. J. Harrison, G. J. Bennett, H. T.-W. Tan, J. Chem. Res. (S) 1996, 392.

^[2] a) W. D. Ollis, M. V. J. Ramsay, I. O. Sutherland, S. Mongkolsuk, Tetrahedron 1965, 21, 1453, and references therein; b) G. Kartha,